Consumer Confidence Report # **Annual Drinking Water Quality Report** ### ROCK FALLS #### IL1950450 Annual Water Quality Report for the period of January 1 to December 31, 2019 This report is intended to provide you with important information about your drinking water and the efforts made by the water system to provide safe drinking water. The source of drinking water used by ROCK FALLS is Ground Water For more information regarding this report contact: Name Ted Padilla Phone 815-622-1120 Este informe contiene información muy importante sobre el agua que usted bebe. Tradúzcalo ó hable con alguien que lo entienda bien. ## Source of Drinking Water The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity. Contaminants that may be present in source water include: - Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife. - Inorganic contaminants, such as salts and metals, which can be naturally-occurring or result from urban storm water runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming. - Pesticides and herbicides, which may come from a variety of sources such as agriculture, urban storm water runoff, and residential uses. - Organic chemical contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban storm water runoff, and septic systems. - Radioactive contaminants, which can be naturally-occurring or be the result of oil and gas production and mining activities. Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the EPAs Safe Drinking Water Hotline at (800) 426-4791. In order to ensure that tap water is safe to drink, EPA prescribes regulations which limit the amount of certain contaminants in water provided by public water systems. FDA regulations establish limits for contaminants in bottled water which must provide the same protection for public health. Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/CDC guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Drinking Water Hotline (800-426-4791). If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. We cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead. #### Source Water Information | Source Water Name | | Type of Water | Report Status | Location | |-------------------|----------|---------------|---------------|--------------------------| | WELL 2 (11917) | 1000 gpm | GW | Active | 2109 9 th ave | | WELL 5 (00716) | 1000 gpm | GW | Active | 2109 9 th ave | | WELL 7 (02067) | 1000 gpm | GW | Active | 2109 9 th ave | #### Source Water Assessment We want our valued customers to be informed about their water quality. If you would like to learn more, please feel welcome to attend any of our regularly scheduled meetings. The source water assessment for our supply has been completed by the Illinois EPA. If you would like a copy of this information, please stop by City Hall or call our water operator at 815-622-1120. To view a summary version of the completed Source Water Assessments, including: Importance of Source Water; Susceptibility to Contamination Determination; and documentation/recommendation of Source Water Protection Efforts, you may access the Illinois EPA website at http://www.epa.state.il.us/cgi-bin/wp/swap-fact-sheets.pl. Source of Water: ROCK FALLS To determine Rock Falls susceptibility to groundwater contamination, the following documents were reviewed: a Well Site Survey, published in 1990 by the Illinois EPA; and a Source Water Protection Plan prepared by the City of Rock Falls, and published by the Illinois Rural Water Association in May of 1997. Based on the information obtained in these documents, there were no potential sources of groundwater contamination identified that could pose a hazard to groundwater utilized by the Rock Falls community water supply wells. However, information provided by the Leaking Underground Storage Tank and Remedial Project Management Sections of the Illinois EPA indicated several sites in the vicinity of Rock Falls with on-going remediation which may be of concern. Based upon this information, the Illinois EPA has determined that the Rock Falls Community Water Supply's source water is susceptible to VOC and SOC contamination. The basis for this determination includes the detections of VOC in well #4, and the land use within the recharge areas of the wells. This land use includes both residential and agricultural properties. However, as a result of monitoring conducted at the wells and entry point to the distribution system, the land use activities and source water protection initiatives by the city (refer to the following section of this report), the Rock Falls Community Water Supply's source water is not susceptible to IOC contamination. 2019 Groundwater/Electrical Education was a successful year with 205 students involved. The following schools participated: 2nd Grade Dillon School with the tour of the Water Plant. Montmorency and East Coloma 5th Graders Power point presentation of the History of the Ancestral Mississippi River, how nitrates affect the human body, electrical safety, RFHS Environmental Classes understanding the City's Utility Bill. \$1,000 Scholarship was awarded to Payton Yanes Future Construction Projects; 3rd Ave from W 2rd St to 1st Ave (replacing undersize watermain and new road construction) Hudson Dr. from 5th Ave east to dead-end (replacing undersize watermain) 2^{nd} Ave from W 5^{th} St to 1^{st} Ave. (replacing undersize watermain) 2019 Well 5 was rehabilitated due to the concern of plugging of the Well screen. The well has been placed on an annual cleaning schedule to ensure longevity and performance of the well into the future. #### 2019 Regulated Contaminants Detected ### Lead and Copper Definitions: Action Level Goal (ALG): The level of a contaminant in drinking water below which there is no known or expected risk to health. ALGs allow for a margin of safety. Action Level: The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow. | Lead and Copper | Date Sampled | MCLG | Action Level (AL) | 90th
Percentile | # Sites Over AL | Units | Violation | Likely Source of Contamination | |----------------------------|--------------|-------|--------------------|--------------------|-------------------|-------------|-----------------|---| | Copper | 08/15/2017 | 1.3 | 1.3 | 0.212 | 0 | ppm | N | Erosion of natural deposits; Leaching from wood preservatives; Corrosion of household plumbing systems. | | Lead | 08/15/2017 | 0 | 15 | 7.6 | 0 | ppb | N | Corrosion of household plumbing systems;
Erosion of natural deposits. | | Water Quality Definitions: | Test Results | The f | Collowing tables (| ontain scien | tific terms and m | neasures, s | ome of which ma | y require explanation. | Regulatory compliance with some MCLs are based on running annual average of monthly samples. Avg: Level 1 Assessment: A Level 1 assessment is a study of the water system to identify potential problems and determine (if possible) why total coliform bacteria have been found in our water system. A Level 2 assessment is a very detailed study of the water system to identify potential problems and determine (if possible) Level 2 Assessment: why an E. coli MCL violation has occurred and/or why total coliform bacteria have been found in our water system on multiple occasions. The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using Maximum Contaminant Level or MCL: the best available treatment technology. Maximum Contaminant Level Goal or MCLG: The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety. Maximum residual disinfectant level or The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants. Maximum residual disinfectant level goal The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect or MRDLG: the benefits of the use of disinfectants to control microbial contaminants. ### Water Quality Test Results | na: | not applicable | | |-----|----------------|--| |-----|----------------|--| millirems per year (a measure of radiation absorbed by the body) Highest Level Range of Levels Detected Detected micrograms per liter or parts per billion - or one ounce in 7,350,000 gallons of water. ppb: milligrams per liter or parts per million - or one ounce in 7,350 gallons of water. Treatment Technique or TT: A required process intended to reduce the level of a contaminant in drinking water. Inorganic Contaminants Collection Date | 11000 | | 11 1094110 | required process incomes to reduce the rever of a consuminant in arimining material | | | | | | | |--|--------------------|---------------------------|---|-----------------------|----------|-------|-----------|--|--| | Regulated Contaminants | | | | | | | | | | | Disinfectants and
Disinfection
By-Products | Collection
Date | Highest Level
Detected | Range of Levels
Detected | MCLG | MCL | Units | Violation | Likely Source of Contamination | | | Chlorine | 2019 | 1.4 | 1.3 - 1.4 | MRDLG = 4 | MRDL = 4 | ppm | N | Water additive used to control microbes. | | | Haloacetic Acids (HAA5) | 2019 | 15.02 | 12.81 - 15.02 | No goal for the total | 60 | ppb | N | By-product of drinking water disinfection. | | | Total Trihalomethanes (TTHM) | 2019 | 53.4 | 29.1 - 53.4 | No goal for the total | 80 | ppb | N | By-product of drinking water disinfection. | | Units Violation Likely Source of Contamination MCLG | - | | | | | | | | | |-----------------------------------|------------|-------|---------------|----|-----|-----|---|--| | Barium | 01/16/2018 | 0.12 | 0.12 - 0.12 | 2 | 2 | ppm | N | Discharge of drilling wastes; Discharge from metal refineries; Erosion of natural deposits. | | Fluoride | 01/16/2018 | 0.851 | 0.851 - 0.851 | 4 | 4.0 | ppm | N | Erosion of natural deposits; Water additive which promotes strong teeth; Discharge from fertilizer and aluminum factories. | | Iron | 01/16/2018 | 0.011 | 0.011 - 0.011 | | 1.0 | ppm | N | This contaminant is not currently regulated by the USEPA. However, the state regulates. Erosion of natural deposits. | | Nitrate [measured as
Nitrogen] | 2019 | 0.28 | 0.28 - 0.28 | 10 | 10 | ppm | N | Runoff from fertilizer use; Leaching from septic tanks, sewage; Erosion of natural deposits. | | Sodium | 01/16/2018 | 40 | 40 - 40 | | | ppm | N | Erosion from naturally occuring deposits. Used in water softener regeneration. | April 30, 2020